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Abstract
The advent of real-time, short-term farm management tools is 
motivated by the need to protect water quality above and beyond 
the general guidance offered by existing nutrient management 
plans. Advances in high-performance computing and hydrologic 
or climate modeling have enabled rapid dissemination of real-
time information that can assist landowners and conservation 
personnel with short-term management planning. This paper 
reviews short-term decision support tools for agriculture that 
are under various stages of development and implementation 
in the United States: (i) Wisconsin’s Runoff Risk Advisory Forecast 
(RRAF) System, (ii) New York’s Hydrologically Sensitive Area 
Prediction Tool, (iii) Virginia’s Saturated Area Forecast Model, (iv) 
Pennsylvania’s Fertilizer Forecaster, (v) Washington’s Application 
Risk Management (ARM) System, and (vi) Missouri’s Design Storm 
Notification System. Although these decision support tools differ 
in their underlying model structure, the resolution at which they 
are applied, and the hydroclimates to which they are relevant, all 
provide forecasts (range 24–120 h) of runoff risk or soil moisture 
saturation derived from National Weather Service Forecast models. 
Although this review highlights the need for further development 
of robust and well-supported short-term nutrient management 
tools, their potential for adoption and ultimate utility requires 
an understanding of the appropriate context of application, the 
strategic and operational needs of managers, access to weather 
forecasts, scales of application (e.g., regional vs. field level), data 
requirements, and outreach communication structure.
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The widespread adoption of site assessment in agricul-
tural nutrient management planning has centered on 
decision support tools, notably the Phosphorus (P) 

Index, to balance agricultural production and water quality 
objectives (Sharpley et al., 2012). These tools are codified in US 
state and federal nutrient management laws and applied to indi-
vidual farm fields on a periodic basis (typically a 2- to 5-yr period 
corresponding with many crop rotations) to evaluate the inter-
active effects of crop, tillage, fertilizer, and manure management 
on the potential for nutrient loss to the environment (USDA-
NRCS, 2012). It has been argued that new assessment tools 
should provide flexibility in management that is not achieved 
with narrow site assessment approaches, such as agronomic soil-
test thresholds, and in doing so, promote a more comprehensive, 
real-time approach to fertilizer and manure management: what is 
now referred to as the “4 Rs” of nutrient stewardship (right rate, 
right placement, right timing, right form of nutrient applica-
tion). Although state nutrient management planning approaches 
vary widely (Nelson and Shober, 2012), there is a general consen-
sus that opportunities exist for nutrient management planning to 
better reflect on-farm realities and to better protect water quality 
(Sharpley et al., 2012). Indeed, recent surveys highlight concerns 
by farmers, nutrient management planners, and conservationists 
related to the static nature of current planning tools, which are 
often unhelpful when operational decisions must be made over 
short timeframes (Osmond et al., 2012).

At the core of modern nutrient management planning is the 
concept of critical source area management (i.e., minimizing the 
availability of nutrients in areas that are hydrologically active and 

Abbreviations: ARM, Application Risk Management; DSAS, Design Storm Alert 
System; FAR, false alarm ratio; HRRR, High-Resolution Rapid Refresh; NSE, Nash–
Sutcliffe Efficiency; POD, probability of detection; RRAF, Runoff Risk Advisory 
Forecast; SAC-HT, Sacramento Soil Moisture Accounting–Heat Transfer; SAC-
HTET, Sacramento Heat Transfer and Enhanced Evapotranspiration; SAC-SMA, 
Sacramento Soil Moisture Accounting Model; SWAT-VSA, Soil Water Assessment 
Tool–Variable Source Area; U2U, Useful to Usable.

Z.M. Easton and A.R. Sommerlot, Dep. Biological Systems Engineering, Virginia 
Tech, Blacksburg, VA 24061; P.J.A. Kleinman and A.R. Buda, USDA-ARS Pasture 
Systems and Watershed Management Research Unit, University Park, PA 16802; 
D. Goering, NOAA National Weather Service, North Central River Forecast Center, 
Chanhassen, MN; N. Emberston, Whatcom Conservation District, Lynden, WA 
98264; S. Reed, NOAA National Weather Service, Mid Atlantic River Forecast 
Center, State College, PA; P.J. Drohan, Dep. Ecosystem Science and Management, 
Pennsylvania State Univ., University Park, PA 16802; M.T. Walter, Dep. Biological 
and Environmental Engineering, Cornell Univ., Ithaca NY 14853; P. Guinan, Soil, 
Environmental and Atmospheric Division of Plant Sciences, Univ. of Missouri, 
Columbia, MO 65211; J.A. Lory, Plant Science Division, Univ. of Missouri, Columbia, 
MO; A. Sharpley, Dep. Crop, Soil and Environmental Sciences, Univ. Arkansas, 
Fayetteville, AR 72071. Assigned to Associate Editor Douglas Smith.

Copyright © American Society of Agronomy, Crop Science Society of America, and 
Soil Science Society of America. 5585 Guilford Rd., Madison, WI 53711 USA. 
All rights reserved. 
 
J. Environ. Qual. 46:1257–1269 (2017) 
doi:10.2134/jeq2016.09.0377
This is an open access article distributed under the terms of the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Received 30 Sept. 2016.  
Accepted 22 Feb. 2017.  
*Corresponding author (zeaston@vt.edu). 

Journal of Environmental Quality
THE EVOLVING SCIENCE OF PHOSPHORUS SITE ASSESSMENT

SPECIAL SECTION

Core Ideas

•	 Advances in weather forecasting, data management, and mod-
eling improve nutrient management.
•	 New tools facilitate improved farm decisions in response to 
real-time weather.
•	 Nutrient management can be performed operationally and 
strategically with real-time tools.
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connected with stream networks) (Walter and Walter, 1999; 
Sharpley et al., 2011). For both P and nitrogen (N), research has 
shown that an effective strategy for preventing losses in runoff 
is to disassociate potentially polluting activities, like livestock-
manure spreading, in space and time from hydrologically active 
areas (Walter et al., 2000; Easton et al., 2007). Over the long term, 
critical source area management must prevent soil nutrient accu-
mulation in hydrologically active areas; this is particularly critical 
to prevent P losses associated with erosion and soil P desorption 
to soil water (Kleinman et al., 2011; Sharpley et al., 2013). Over 
the short term, critical source area management must prevent 
so-called “incidental transfer” or “wash-off ” of recently applied 
P, the contribution of applied nutrients to runoff immediately 
after application of manure or fertilizer (Preedy et al., 2001; 
Buda et al., 2013). The duration of the incidental transfer risk 
is typically quite short, diminishing exponentially over a period 
of days to weeks during the growing season as applied nutrients 
on the soil surface are translocated into the soil by leaching and 
biological cycling or by sorption to soil (Kleinman and Sharpley, 
2003; Vadas et al., 2007). However, it is the incidental transfer of 
nutrients after fertilizer or manure application that has proven to 
be particularly difficult to target with existing nutrient manage-
ment planning approaches, placing a priority on forecasting site-
specific potential for nutrient wash-off over the short term using 
guidance derived from weather prediction models.

Over the past decade, there have been significant advances 
in the accuracy and precision of numerical weather prediction 
(Hoskins, 2013; Bauer et al., 2015). For instance, short-range fore-
casts (12–72 h) of daily accumulated precipitation and medium-
range forecasts (3–10 d) of temperature and precipitation have 
demonstrated marked improvement in lead time, accuracy, and 
skill, increasing their useful range by about 1 d decade−1 (American 
Meteorological Society, 2015). These advancements have clear 
benefits to short-term runoff prediction. Additionally, medium-
range temperature forecasts have improved greatly in recent years 
and represent a boon to snowmelt runoff forecasting in the winter. 
The spatial resolution of most weather models also has also gotten 
finer, with global models now offering medium-range forecasts of 
precipitation and temperature at nominal horizontal resolutions 
of 9 to 17 km. Increasingly finer resolution is being made avail-
able in the very short range (12–18 h), with a prime example 
being the High-Resolution Rapid Refresh (HRRR) model devel-
oped by NOAA’s National Center for Environmental Prediction 
(Alexander et al., 2016). The HRRR provides hourly rainfall fore-
casts at 3-km horizontal resolution out to 18 h, thereby improving 
the representation of localized rainfall distributions and intensities 
driven by convective storms. The latter benefit cannot be under-
stated, as peak hourly rainfall intensity is a key determinant of the 
runoff-generating potential of a storm (Buda et al., 2009). With 
the exception of very short-range models like the HRRR, which 
operates only in North America, the global scope of most short- to 
medium-range weather models enables widespread access to state-
of-the-art weather predictions.

With greater availability of high-resolution weather fore-
casts, great strides have been made in short-term decision sup-
port tools in agriculture (Mase and Prokopy, 2014). For instance, 
the Fusarium Risk Assessment Tool uses local climatic modeling 
to predict conditions favorable to wheat blight over a 1- to 3-d 
period (http://www.wheatscab.psu.edu/). Credited with major 

reductions in fungicide use in wheat production, corresponding 
to millions of dollars in savings, the wheat blight tool also uses 
input from local weather and pest monitoring stations to update 
conditions and improve forecast predictions. In addition to crop 
disease forecasting, short-range weather forecasts also play an 
important role in irrigation scheduling, crop growth modeling, 
and predicting the risk of frost and freeze in fruit production. 
Many of these tools can be found on the Useful to Usable (U2U) 
website (https://mygeohub.org/groups/u2u), which serves as a 
clearinghouse for agricultural decision support tools throughout 
the North-Central United States. Along the same lines as U2U, 
the Northeast Climate Center’s Climate Smart Farming website 
(http://climatesmartfarming.org/) offers an array of decision 
support tools that leverage short-range meteorological forecasts 
for agricultural decision making, including a grape (Vitus vinif-
era L.) hardiness and freeze risk calculator that is specific to the 
wine industry in the Northeast United States.

Although this is but a small snapshot of the budding deci-
sion support tool landscape in agriculture, the inherent value 
of short-range weather forecasts to farmers (Haigh et al., 2015) 
suggests great potential for new tools to address underserved 
areas of the agricultural decision-making process, such as nutri-
ent application management.

Given the limitations of existing nutrient management plan-
ning approaches that often focus on tactical (i.e., weekly to 
monthly planning horizons) and strategic (i.e., seasonal or yearly 
timeframes) decision making (Hollinger, 1991), and given the 
greater availability of high-resolution forecasting data, a spate 
of operational (i.e., daily) nutrient management decision sup-
port tools have been proposed and even tested for short-term P 
site assessment and other related uses. In this paper, we review 
six nutrient management decision support tools developed in 
the United States that span multiple regions and intended uses. 
Because implementation of these tools has been limited, we first 
review their individual characteristics (data sources, modeling 
approaches, outputs, and anticipated uses), then examine them 
by comparing scales, predictive horizons, practical advantages, 
and uncertainty. In doing so, we seek to establish the current 
state-of-the-science and to elucidate the benefits and limitations 
of forecast-driven nutrient management decision making.

Forecast-Driven Decision 
Support Systems

The six decision support systems reviewed in this paper share 
the common goal of leveraging weather forecasts to support oper-
ational decision making in nutrient management. Nevertheless, 
the systems employ a variety of approaches to infer the risk of 
incidental nutrient losses from agriculture, with four tools run-
ning watershed simulation models to forecast runoff amounts 
and saturated area extents, and two others relying exclusively on 
regional precipitation forecasts to convey runoff risk (Table 1). 
Of the tools using watershed models, the Wisconsin Runoff 
Risk Advisory System and the Pennsylvania Fertilizer Forecaster 
apply models supported by NOAA to predict runoff and soil 
moisture conditions that determine the nutrient wash-off poten-
tial of a watershed or field. Watershed modeling also underpins 
New York’s Hydrologically Sensitive Area Tool and Virginia’s 
Saturated Area Forecast Tool, although instead of forecasting 

http://www.wheatscab.psu.edu
https://mygeohub.org/groups/u2u
http://climatesmartfarming.org
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specific runoff amounts, the tools provide subfield maps of 
saturated areas showing regions of the landscape prone to nutri-
ent wash-off. Unlike the tools from Wisconsin, Pennsylvania, 
New York, and Virginia, the Washington Application Risk 
Management Tool and Missouri Design Storm Alert System rely 
solely on precipitation totals to infer the risk of nutrient loss in 
runoff, with Missouri’s system further distinguished by its use of 
radar to warn farmers of rainfall events that may have exceeded 
design criteria for manure storage. The tools described below are 
in various stages of implementation, ranging from prototype ver-
sions that are currently undergoing research and development, 
such as those operating in Pennsylvania and Virginia (although 
both are functional and online), to more fully developed and 
implemented tools like the ones in Wisconsin, New York, 
Washington, and Missouri. With these basic distinctions in 
mind, the sections below are intended to provide further insight 
into each of the six decision support systems, including their key 
features and uses, input data sources, modeling methods, and 
forecast outputs.

Wisconsin’s Manure Management Advisory System’s 
Runoff Risk Advisory Forecast

The Wisconsin Runoff Risk Advisory Forecast (RRAF) is 
a web-based application (mobile or desktop) instituted by the 
state’s Manure Advisory System “to identify suitable cropland 
areas for spreading” and prevent nutrient application during 
periods of high runoff potential (http://www.manureadvisory-
system.wi.gov). Daily forecasts of low, medium, and high runoff 
risk are generated for 216 watersheds using 72-h lead times, or 
“risk windows,” over 3-d forecasting periods in the summer and 
10-d periods in the winter, when snowmelt runoff is of prime 
concern (Fig. 1). Currently, runoff risk forecasts are intended 
for voluntary use by manure applicators and are distinguished, 
in part, from other forecast-driven decision support tools in 
the broad scale, at which forecasts are issued (average basin size 
of ~750 km2). As such, Wisconsin’s tool functions similarly to 
more familiar fire danger systems (Bradshaw et al., 1984; Burgan, 
1988) in that it conveys generalized runoff risks that can then be 
interpreted by end users at finer, local scales for action. Moreover, 
Wisconsin’s forecast is linked to a variety of online resources, 
including guidance on selecting fields for spreading manure 
during times of high runoff risk. County-specific, field-scale 
manure spreading guidelines can be located through these links, 
but they do not interface with the dynamic forecasts. Given that 
it is the longest-running runoff risk system in the United States, 
end users have had ample time to become familiar with the tool 
and its forecasts and generally give it high ratings on forecast 
quality and usability through online feedback and surveys.

Wisconsin’s RRAFs are based on output from NOAA’s 
Sacramento Soil Moisture Accounting Model (SAC-SMA) 
(Burnash, 1995), a lumped hydrological simulation model pri-
marily used in operational flood forecasting by National Weather 
Service River Forecast Centers across the United States. Principal 
inputs to the SAC-SMA model include quantitative precipita-
tion forecasts from NOAA’s Weather Prediction Center (5-km 
resolution) and temperature forecasts from the National Digital 
Forecast Database (5-km resolution). Runoff events in the SAC-
SMA environment are predicted when three specific criteria are 

met, including when rain + snowmelt > 0 (to account for runoff 
induced by rainfall and snowmelt), upper zone tension water defi-
cit = 0 (i.e., saturated soils), and interflow runoff depths > 0 mm. 
In winter mode, rain + snowmelt runoff is predicted by SNOW-
17, a snow accumulation and ablation model (Anderson, 2006), 
which is then input into SAC-SMA to determine if runoff is due 
to rainfall, snowmelt, or their combination. Runoff Risk Advisory 
Forecasts feature three stages of risk that are based on forecast 
runoff depths, with forecasts indicating low-, medium-, and high-
risk events discerned using runoff depth thresholds that are spe-
cific to each forecast basin (see Goering [2014] for more details on 
how basin-specific runoff thresholds were set). Although the oper-
ational version of Wisconsin’s tool is watershed based, newer ver-
sions are in development, with plans to migrate from the lumped 
SAC-SMA model to NOAA’s Sacramento Heat Transfer and 
Enhanced Evapotranspiration (SAC-HTET) model (Koren et al., 
2010), which possesses finer spatial resolution (16 vs. ~750 km2). 
In addition, the success of Wisconsin’s tool has spurred plans to 
extend its general runoff forecasting approach to other states in 
the Great Lakes region, including Minnesota, Michigan, Indiana, 
Illinois, Ohio, and Great Lakes drainages of New York.

The operational version of Wisconsin’s Risk Advisory 
Forecast system has largely been corroborated with historical 
runoff datasets from edge-of-field (0.06–0.16 km2) and small 
watershed (25–65 km2) monitoring programs in Wisconsin. 
Using the Critical Success Index, a skill score based on a two-
by-two contingency table of true positives (hits), true negatives 
(correct forecasts of no runoff ), false positives (runoff forecasts 
that did not occur), and false negatives (misses), Goering (2014) 
showed that the Runoff Risk Advisory System could skillfully 
predict runoff events at edge-of-field and small watershed scales 
(~5 ha) (Critical Success Index ~ 0.35). A primary emphasis of 
ongoing model testing and development has been to accurately 
predict large runoff events considered most important to water 
quality impacts while minimizing incorrect prediction of small 
events (false positives). Even so, the model tends to overpredict 
the occurrence of small runoff events, requiring statistical algo-
rithms to filter these events. Although the Wisconsin system is 
applicable year round, it tends to be more aggressive in restrict-
ing application during winter due to the known elevated risks of 
manure wash-off during that time period and serves as a key com-
ponent of the state’s winter spreading guidelines. Consequently, 
it is no surprise that user activity tends to peak in the winter 
months, in line with the increased risk of snowmelt runoff.

New York’s Hydrologically Sensitive Area Tool
New York’s Hydrologically Sensitive Area Tool is a web-based 

system that uses real-time measured data and 24- to 48-h weather 
forecasts to predict present-day and future soil moisture saturation 
conditions at a subfield level (Fig. 2). This approach does not esti-
mate the occurrence of runoff but rather predicts antecedent soil 
moisture saturation, which has been documented to be the most 
important factor determining runoff occurrence for soils of this 
area. The tool has been applied to two watersheds in central New 
York, where it was intended to help guide nutrient management 
planners and farmers in identifying areas of the landscape prone to 
nutrient loss in runoff up to 48 h into the future. The tool leverages 
additional geospatial datasets to help users locate areas of interest 
(e.g., property and field boundaries via tax parcel code) and other 

http://www.manureadvisorysystem.wi.gov
http://www.manureadvisorysystem.wi.gov
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useful information for nutrient and conservation planning (e.g., 
flood frequency and soil drainage information).

The model underpinning New York’s tool incorporates daily 
water balance simulation using the Thorthwaite–Mather method 
(McCabe and Markstrom, 2007) to predict daily streamflow 
(Dahlke et al., 2013). Results from the daily water balance model 
are used to estimate the fraction of the watershed that is likely to 
generate surface runoff. According to this output, the location of 
saturated zones is distributed throughout the watershed using a soil 
topographic index (Easton et al., 2008; Dahlke et al., 2013). The 
New York Hydrologically Sensitive Area Tool has been rigorously 
evaluated from the standpoint of soil moisture saturation forecasts. 
Analysis of soil moisture saturation predictions in the Salmon 
Creek Watershed of New York indicated that 71% of the largest 

storm events between 2006 and 2009 were correctly predicted on 
the basis of 48-h forecasted weather data (Dahlke et al., 2013).

Virginia’s SWAT-VSA Saturated Area Forecast Model
Virginia’s Saturated Area Forecast Model relies on a water-

shed fate-and-transport model (the Soil Water Assessment 
Tool–Variable Source Area model, SWAT-VSA; Easton et al., 
2008) to provide simple and accessible forecasts designed to 
inform field-level management decisions that affect water quality 
(Sommerlot et al., 2016). In addition to serving as a decision sup-
port tool for nutrient management, the Saturated Area Forecast 
Model is spatially and temporally scalable and can forecast a wide 
variety of variables, including water quality (N, P, and sediment 
loading to streams), water budget (percolation, runoff volume, 

Fig. 1. Screen capture of Wisconsin’s Runoff Risk Advisory Forecast. Watersheds depicted in red and orange show areas of high and medium runoff 
risk, respectively (1-, 2-, and 3-d forecasts are also available).
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precipitation, and evapotranspiration), and crop production 
(plant biomass, plant growth, and harvest yields). These pre-
dictions can inform decision making over a range of landscapes 
(although regions where terrain largely controls the movement 
of water are most appropriate) and provide management benefit 
by connecting managers and planners with estimates of water 
resource impact and even crop yields. The operational version 
of the Saturated Area Forecast Model is accessible via web-based 
and mobile applications and provides 24- to 96-h forecasts 
updated four times per day of watershed-scale stream flow and 
subfield-level soil moisture status (Fig. 3).

To produce distributed hydrologic predictions of runoff prob-
ability and soil moisture, the Saturated Area Forecast Model uses 
dynamic meteorological forecasts to run the hydrologic model 
within SWAT-VSA (Sommerlot et al., 2016). Meteorological 
data from NOAA’s Global Forecast System-Model Output 
Statistics are downloaded every 6 h, producing forecasts four 

times daily (GFS, 2015). Maps of surface runoff area risk and soil 
moisture risk are produced using the soil topographic wetness 
index (Walter et al., 2002; Easton et al., 2008), as is done with 
New York’s Hydrologically Sensitive Area Tool. Soil saturation is 
determined through a binary classification with a spatially vari-
able threshold soil water depth determined as a function of land 
use and topography.

Corroboration of Virginia’s Saturated Area Forecast Model 
Tool has primarily focused on hydrologic predictions. For 
instance, Sommerlot et al. (2016) evaluated model performance 
in predicting streamflow and the extent of saturated areas within 
the South Fork of the Shenandoah River, a 2600-km2 mixed-
land-use watershed in North-Central Virginia. Field-level 
hydrologic forecasts of saturated area extent (3-m resolution) 
were compared with observed saturated areas mapped on two 
occasions in December 2015, with results demonstrating a true 
positive rate of 0.86 and a false positive rate of 0.25. Both metrics 

Fig. 2. User interface of New York’s Hydrologically Sensitive 
Area Tool. Red areas show hydrologically sensitive areas 
(HAS) predicted with the semidistributed water balance 
model. A daily update of forecasted weather conditions and 
HSA dynamics in Salmon Creek Watershed is given in the 
top-right frame.

Fig. 3. Interface screen shot of Virginia’s Saturated Area Forecast Model showing distributed soil saturation forecasts for (a) 24-, (b) 48-, (c) 72-, and 
(d) 96-h lead times that depict the drying of a variably saturated area in an agricultural field over multiple days.



Journal of Environmental Quality 1263

range from 0 to 1 though need not add to 1, and high true posi-
tive values complimented by low true negative values describe 
better performance. Although the corroboration was limited to 
a number of measured areas around the watershed, the classifica-
tions generally fit expected distributions of unsaturated and satu-
rated soil extents across the watershed, lending confidence to the 
saturated area mapping approach.

Pennsylvania’s Fertilizer Forecaster
The Pennsylvania Fertilizer Forecaster is a web-based runoff 

forecasting tool that seeks to enable field-specific decisions by 
farmers as to when and where to apply fertilizers and manures 
over the short term. Like the other short-range forecasting tools, 
Pennsylvania’s Fertilizer Forecaster is intended for voluntary use by 
farmers, with the primary goal being to assist end users in distin-
guishing high-risk rainfall-runoff events that lead to manure and 
fertilizer “wash-off ” from lighter precipitation events that pro-
mote nutrient “wash-in” via infiltration. The tool provides output 
at two scales, including watershed-level views of low, medium, and 
high runoff risk, as well as field-scale (e.g., <5 ha) maps showing 
the likely extent of runoff contributing areas (Fig. 4). All forecasts 
are provided daily at 24-, 48-, and 72-h lead times, with the main 
focus being the prediction of rainfall-generated runoff events 
during the growing season. Future iterations of the tool will strive 
to address snowmelt runoff events during the winter months, 
which represent an issue of emerging importance to nutrient man-
agers in Pennsylvania (Pennsylvania DEP, 2011).

Similar to Wisconsin, Pennsylvania’s tool leverages quantita-
tive precipitation forecasts from the Weather Prediction Center 
(5-km resolution) to drive NOAA’s Sacramento Soil Moisture 
Accounting–Heat Transfer (SAC-HT) model (Koren et al., 
2010), a fully distributed (2-km resolution) hydrologic simula-
tion model with improved prediction of soil moisture and frozen 
ground processes. Interflow and surface runoff predictions from 
SAC-HT are used in conjunction with soil moisture and pre-
cipitation forecasts to derive three tiers of runoff risk, with low 
risk signified by runoff events occurring during dry periods (soil 
saturation ratio < 0.6), medium risk indicated by runoff events 

on saturated soils (soil saturation ratio > 0.6) with contributing 
areas occupying <20% of the watershed, and high risk associated 
with exceptionally wet conditions (soil saturation ratio > 0.6) 
and runoff contributions from ³20% of the basin. Daily fore-
casts of the percentage of the basin expected to generate surface 
runoff (i.e., the runoff coefficient) are then disaggregated and 
mapped at the field level using either the topographic wetness 
index (Beven and Kirkby, 1979) or the depth-to-water index 
(Murphy et al., 2009). These field-scale maps of likely runoff-
contributing zones allow farmers to discern hydrologically active 
areas from other parts of the basin less likely to be hydrologically 
connected to streams.

To date, efforts to corroborate the Fertilizer Forecaster include 
historical simulations of model predictions versus observed 
runoff data from small watersheds and edge-of-field monitoring. 
The main emphasis has been on assessing the suitability of runoff 
risk thresholds and confirming the accuracy of predicted runoff-
contributing areas. For instance, the three runoff risk thresholds 
were recently tested with the Gerrity skill score (Wilks, 2011), 
which assesses the accuracy of a forecast in predicting the cor-
rect risk category relative to that of random chance. Preliminary 
results using 3 yr of runoff data (2010–2012) from the WE-38 
watershed in central Pennsylvania yielded a Gerrity skill score of 
0.6, which indicated that the SAC-HT model could adequately 
categorize runoff risk using the three-tiered system. In addition, 
field-scale runoff-contributing area maps have also been evalu-
ated by comparing the predictions against “wet-boot” maps of 
observed saturated areas using various measures of spatial agree-
ment, including Cohen’s kappa (Grabs et al., 2009), as well as 
spatial statistics based on quantity disagreement and allocation 
disagreement (Pontius and Millones, 2011).

Washington’s Application Risk Management System
The Application Risk Management (ARM) System was devel-

oped for use in western Washington State to help farmers avoid 
nutrient runoff and leaching events after manure application. 
Washington’s system works by addressing the timing of applica-
tion using precipitation forecasts (Manure Spreading Advisory), 

Fig. 4. Images of Pennsylvania’s Fertilizer Forecaster showing (a) forecasted runoff risk levels (low, medium, high) for 88 2-km ´ 2-km grid cells 
that constitute the Mahantango Creek Watershed and (b) a field-scale view of predicted runoff contributing areas for a moderate risk event (runoff 
coefficient = 0.3).
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assessing current field conditions via a user-input worksheet 
(ARM Worksheet), and recommending manure spreading set-
backs of variable width from waterways (Whatcom Conservation 
District, 2015). The system provides a web-based 3- and 5-d 
Manure Spreading Advisory that displays daily regional runoff 
risk projections according to forecast precipitation. The Manure 
Spreading Advisory map was created by dividing the Western 
Washington region into 103 regions (i.e., polygons) of similar 
precipitation, physiographic, and management conditions. The 
risk of manure wash-off is then predicted for each region using 
72-h cumulative precipitation forecasts from NOAA (>12.7 
mm [0.50 in.] = high, 12.7–6.4 mm [0.50–0.25 in.] = medium-
high, 6.4–2.5 mm [0.25–0.10 in.] = medium, <2.5 mm [0.10 
in.] = low). Initial evaluation of the system determined that pre-
cipitation forecasts were most reliable over short lead times of 0 
to 72 h as compared with longer lead times.

The ARM System provides a combination of regional and 
field-level manure spreading advisories. When a region is under 
the high risk category, no manure application is recommended 
due to the nature of the forecasted storm (Fig. 5). For lesser risk 
categories (low, medium, and medium-high), users are encour-
aged to complete a field-scale assessment to differentiate manure 
wash-off potential between individual fields. The follow-up 
assessment relies on a web-based ARM worksheet to guide 
users through a list of relevant field observations, including soil 
moisture, water table depth, presence of tiles, crop cover condi-
tion, presence of frozen soils, manure application method, and 
proximity to water body. The completed worksheet also provides 
farmers with a means for recordkeeping that allows them to 

assess the effectiveness of past manure application decisions, as 
well as the forecast guidance that led to each decision.

Missouri’s Design Storm Alert System
The Design Storm Alert System (DSAS; Guinan et al., 

unpublished data, 2016) provides Missouri farmers, regula-
tors, agency personnel, and other interested parties with daily 
information on precipitation events that may have exceeded 
design criteria for open manure and wastewater storage facili-
ties. Chronic and catastrophic design storm events are defined in 
the Missouri Code of State Regulations (Carnahan, 2012) and 
include the 25-yr/24-h, 10-yr/10-d, 10-yr/90-d, 10-yr/180-d, 
and 10-yr/365-d storm events. Precipitation events exceeding 
these defined depths can lead to overflow of storages unless there 
is a concerted effort to land apply effluent, a possible challenge 
under wet conditions within the requirements of a nutrient 
management plan. The notification system has two objectives: 
(i) to notify farmers when extreme precipitation events may have 
affected their farm, providing them guidance on how to monitor 
and manage effluent levels and manure applications under wet 
weather conditions; and (ii) to notify regulators, agencies, and 
extension and industry representatives where in the state there 
is a risk of excessive precipitation and/or documented excessive 
rainfall to promote active outreach to affected areas, minimizing 
the potential for mismanagement of storage levels.

Missouri’s DSAS tracks daily accumulation of precipitation 
for ~11,000 4-km ´ 4-km quadrants using data from NOAA’s 
gridded radar precipitation analysis (AHPS, 2016). Design 
storm amounts were derived from county averages from the 

Fig. 5. (a) Washington’s Manure Spreading Advisory, part of the Whatcom Conservation District’s Application Risk Management system. (b) Example of 
Manure Spreading Advisory map showing 24- and 72-h precipitation forecasts (in inches) and accompanying risk ratings for each precipitation region.
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NOAA Climate Atlas 14, Volume 8 (Perica et al., 2013). A 
county is designated in “watch” status if any quadrant in the 
county fits ³90% of the design storm criteria and in “alert” status 
if any quadrant fits ³100% of the design criteria. A webpage 
reports the daily status of each county (http://ag3.agebb.mis-
souri.edu/design_storm/; e.g., Fig. 6). Additionally, farmers can 
register to receive an email that couples their county alert status 
with precipitation totals and predictions for their farm. The tool 
has been tested by comparing outputs with measured data from 
NOAA and other daily precipitation networks, with generally 
good correspondence.

Underlying Factors and Tradeoffs  
of Short-Term Forecasting Tools
Intended Use

There is no doubt that demand exists for short-term forecasting 
tools, as evidenced by farmer surveys on conservation and nutri-
ent management (Osmond et al., 2012) and by reports of daily 
use of weather forecasts by farmers and other agricultural services 
(Haigh et al., 2015). All tools described here are intended to be 
used by farmers, custom operators, and conservation and exten-
sion personnel to protect water quality and improve nutrient use 
efficiency. Developers clearly envision an immediate audience 
of farmers and other nutrient applicators who would use daily 
decision support information to adjust broader, strategic nutri-
ent management planning that constrains fertilizer and manure 
spreading options over longer planning horizons (e.g., the P Index; 
Sharpley et al., 2003). Early adopters would include conservation-
ists and those using precision farm management, especially those 
with modern equipment who are technically savvy (Zhang et al., 
2016). Experience with other agricultural decision support sys-
tems has demonstrated that, over time, conscientious end users 
internalize recommendations and eventually make their own 
predictions on the basis of experience with the decision support 
tool (McCown, 2002). This potential outcome is obvious with 
a tool like the Washington ARM, which is precipitation based 
(with no hydrologic algorithms to adjust forecasts). Moreover, 

Washington’s ARM System features an intensive field assessment 
component that educates applicators on appropriate site condi-
tions for spreading with continuous use of the tool.

In addition to use by nutrient applicators, there are other 
potential end uses of these tools, intended and unintended. It 
is important to recognize that concern exists over the potential 
that spatially explicit forecasting tools will be used to devise and 
enforce manure spreading regulations or to report noncom-
pliant applicators. Each of the short-term forecasting systems 
described above includes uncertainty related to the weather fore-
cast, hydrologic forecast (if given), and other algorithms (Xuan 
et al., 2009) that will occasionally yield erroneous predictions of 
runoff risk potential (positive or negative). The tools do, how-
ever, represent the best available science and can serve as a back-
stop to support prudent nutrient management. The short-term 
forecast tools in Wisconsin and Washington are seen as a means 
of protecting compliant applicators against enforcement actions, 
following the logic that their use is a form of best management 
practice (Wisconsin DNR, 2013). Elsewhere, the Virginia 
Saturated Area Forecast Tool and the Pennsylvania Fertilizer 
Forecaster have been billed as guidelines to inform watershed 
managers and others of the potential benefits and liabilities of 
alternative nutrient management actions on water quality. This 
is seen as particularly relevant to ongoing watershed activities in 
the Chesapeake Bay Region, including as a means of educating a 
more general audience of the extent to which agricultural nutri-
ent management can contribute to Chesapeake Bay mitigation.

Input Data, Models, and Scaling Considerations
All decision support systems described here are dependent 

on input from NOAA-derived weather forecast products, with 
varying spatial resolutions and lead times (Table 1). For instance, 
the Virginia Soil Saturated Area Forecast Model and the New 
York Hydrologically Sensitive Area Tool use precipitation and 
temperature inputs from the Global Forecasting System–Model 
Output Statistics, which possesses a nominal horizontal resolu-
tion of 13 km for lead times out to 10 d. In comparison, short-
term runoff forecasting tools from Pennsylvania and Wisconsin, 

Fig. 6. (a) Daily radar analysis for the 24-h period ending 6:00 AM CST, 1 Aug. 2016, and (b) the resulting 25-yr/24-h Design Storm Alert System map 
for that day.

http://ag3.agebb.missouri.edu/design_storm
http://ag3.agebb.missouri.edu/design_storm
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as well as Washington’s precipitation-based risk system, rely 
on NOAA-generated multimodel blends (which include the 
Global Forecasting System) of forecast weather variables that 
are mapped at 5-km resolution for lead times of 7 d. Missouri’s 
system offers a stark contrast to the other tools in that it looks 
backward instead of forward, enabling it to leverage fine-scale, 
4-km radar data from NOAA to provide farmers with estimates 
of accumulated precipitation from storm events occurring over 
the past 24 h.

Of the six forecasting tools reviewed herein, four rely on 
hydrologic models that differ in structure and output scale 
(Table 1). For example, developmental versions of the Wisconsin 
and Pennsylvania systems use SAC-HTET, a fully distributed 
model that provides hydrologic forecasts in the range of a 4- 
to 16-km2 grid. In comparison, the tools from New York and 
Virginia both predict watershed-scale (300–1200 km2) runoff, 
with New York’s tool using Thorthwaite–Mather daily water bal-
ance routines and Virginia’s tool relying on SWAT-VSA, both of 
which possesses the added benefit of viewing outputs at the scale 
of individual hydrological response units or fields (<1 ha) within 
each basin. Of greater contrast are the routines used to represent 
winter runoff risk, with New York and Virginia using a landscape 
energy budget (Fuka et al., 2012) to predict snow accumula-
tion and snowmelt, and Wisconsin and Pennsylvania applying 
SNOW-17, a temperature index model that predicts snow accu-
mulation and ablation (Anderson, 2006). Neither the Missouri 
nor Washington tools include specific forecasts of snowmelt, but 
Washington’s Application Risk Management prohibits manure 
application to frozen and saturated ground.

The spatial and temporal scales of short-term forecast systems 
have clear implications to the uncertainty of their predictions, as 
well as their interpretation and use. Indeed, there exist benefits and 
drawbacks to projecting short-term advisory forecasts at regional 
and field scales. For instance, precipitation forecasts tend not to 
vary below the coarse output scales of numerical weather predic-
tion models (~9–13 km), even though hydrologic forecasts may 
be characterized at scales of meters. Regional projections, such 
as those offered by the operational tools from Washington and 
Wisconsin, produce output at scales roughly similar to their input 
data, avoiding the potential for spurious precision in downscaling. 
For those forecasting tools that project results at scales finer than 
the weather forecasts, output data from hydrologic models must 
be downscaled using various algorithms. Examples include the 
tools from New York, Pennsylvania, and Virginia, which use varia-
tions of the topographic wetness index as a means for downscaling 
and mapping subfield areas of saturation and runoff generation. 
Although field specificity is often an expressed desire of farmers 
and other potential end users of short-range forecasts (Mase and 
Prokopy, 2014), additional sources of uncertainty stemming from 
the choice of downscaling method and the source of digital eleva-
tion data (Wechsler, 2007) must be acknowledged and reported.

A motivation of the finer-scale forecasts is to elucidate options 
to end users in deciding which fields or area of a field to apply 
nutrients on a particular day. However, at field and subfield scales, 
the complexity of processes limits of downscaling, and potential 
for compounding error increases greatly. Although regional fore-
casts such as those issued by Wisconsin and Washington do not 
visually delineate options to end users on maps, they do have the 
advantage of being simpler to understand and easier to act on. 

The regional tools tend to be more computationally efficient than 
fine-scale tools, even though data needs are approximately the 
same between scales. Because all tools (subfield and regional scale) 
produce specific outcomes, uncertainty or probability of error are 
not currently communicated in their forecasts, something that 
should be explored in future iterations. Indeed, “imperfect fore-
casts” using ensembles of models to portray predictive uncertainty 
may be more valuable to farmer decision making than those that 
imply confidence through deterministic modeling approaches 
(Kusunose and Mahmood, 2016).

Forecast Corroboration
Forecast quality (i.e., the accuracy and skill of predicted out-

comes by a forecast; Murphy, 1993; Wilks, 2011) is key to the util-
ity of the tools reviewed here. Overall, the accuracy and skill of 
weather forecasts that drive these tools has consistently improved, 
especially in predicting large, frontal events typical of fall through 
spring periods (Siddique et al., 2015; Sharma et al., 2017) that, 
coincidentally, are also the major manure application windows 
in many regions. However, sensitivity analysis is needed for all 
tools to separate errors inherent to weather forecasts from errors 
derived from the hydrologic models for which they provide input 
data. Ultimately, this level of understanding of forecast quality will 
drive solutions such as ensemble modeling, currently at the core of 
weather forecasting (Regonda et al., 2013).

To some extent, all of the short-term forecasting tools have 
been evaluated for accuracy and skill, albeit using a variety of 
approaches focused on a range of output variables.

Assessing the basin-scale-based Wisconsin RRAF tool for 
success at the field scale highlights inherent challenges with this 
type of validation. In an effort to address this, Goering (2014) 
compared the tool against both edge-of-field-scale observations 
and small USGS watersheds <38 km2. The results produced 
measures such as Critical Success Index, which ranged from 0.34 
to 0.42 when the two observational scales were combined and 
thresholds were introduced. The spatial scale difference between 
observations and model output lead Goering (2014) to rely more 
on a holistic view and not entirely on statistical assessment mea-
sures. Indicators such as probability of detection (POD), false 
alarm ratio (FAR), and relative magnitudes between events cor-
rectly forecast versus events that were missed or false alarms were 
the primary tools for validation. Values of POD ranged from 
0.62 to 0.80 (small USGS watersheds and edge-of-field sites), 
whereas FAR values ranged from 0.45 to 0.71. Goering (2014) 
concluded that the POD scores of the Wisconsin RRAF were 
sufficient to apply to smaller scales and also noted that median 
event hit-miss and hit-false alarm ratios of ~8 were a good reason 
to pursue the application of thresholds to stratify the risk based 
on event magnitudes. Incorporating risk thresholds allowed the 
RRAF to focus users of the tool on the larger events, where there 
was more confidence in occurrence, while allowing the presence 
of smaller events to be indicated, yet with the understanding 
there was less certainty in those forecasts.

The New York tool was evaluated against several years of daily 
historical discharge and spatially distributed predictions of field-
level soil moisture. The daily model predictions evaluated against 
the historic discharge data showed an Nash–Sutcliffe Efficiency 
(NSE; Nash and Sutcliffe, 1970)  > 0.6, although convective 
summer storms tended to be mischaracterized, due in part to 
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missed precipitation forecasts. The spatially distributed predictions 
of soil moisture were evaluated by comparison against measured 
saturated areas and agreed in >50% of the days overall and in >67% 
of the days when large storm events occurred (Dahlke et al., 2013).

The Virginia Saturated Area Forecast Model was evaluated 
by considering both the streamflow forecasts and the spatially 
distributed forecast predictions. Evaluation of the streamflow 
forecast is critical, because the distributed predictions are a func-
tion of the overall watershed discharge (Easton et al., 2008). 
Streamflow predictions were evaluated using the NSE metric 
and were shown to provide adequate forecast power 4 d into the 
future (NSE > 0.5). Spatially distributed soil moisture forecasts 
were evaluated using a confusion matrix approach described 
above. Of the 49 areas measured, two were incorrectly classified 
as saturated when they were unsaturated (false positives), and 
seven were incorrectly classified as unsaturated when they were 
saturated (false negatives). Thirty true positives (areas correctly 
classified as saturated) and 10 true negatives (areas correctly clas-
sified as unsaturated) were predicted (Sommerlot et al., 2016).

The Pennsylvania Fertilizer Forecaster is mainly evaluated by 
comparing streamflow predictions against observed discharge data 
from stream gauging stations. In the WE-38 watershed, a 7.3-km2 
tributary basin to Mahantango Creek, the NSE of streamflow sim-
ulations by SAC-HT generally exceeded 0.6, indicating the reli-
ability of forecasts at small basin scales. As mentioned elsewhere, 
spatial agreement between predicted runoff-contributing areas 
and saturated zones monitored by wet-boot mapping is being 
assessed with Cohen’s kappa (Grabs et al., 2009) and spatial statis-
tical measures according to quantity disagreement and allocation 
disagreement (Pontius and Millones, 2011).

The Washington Manure Spreading Advisory was validated 
by comparing the NOAA forecast data used to create the runoff 
risk ratings with actual precipitation data. This correlation was 
assessed using linear regression to determine the degree to which 
the forecasted precipitation values predicted the actual precipita-
tion amount, as well as how that correlated with other conditions 
such as soil moisture and frozen ground to predict risk. The gen-
eral finding was that the forecast tended to predict the short-term 
risk (cumulative precipitation for 24 h, r2 = 0.59) better than the 
long-term risk (72-h cumulative precipitation, r2 = 49). The trend 
was for the greatest error when the forecast prediction was low 
(<12.7 mm) but the actual amount was high (>12.7 mm).

The Missouri tool relies on repackaged radar data and thus 
has been evaluated by NOAA during the gridded radar precipi-
tation analysis product development and deployment.

Understanding model accuracy and skill is also fundamental 
to the establishment of risk thresholds or categories in short-term 
forecasting tools. Both the spatial extent and intensity of risk 
are portrayed by the different tools. For instance, the Missouri, 
Pennsylvania, Washington, and Wisconsin tools all display cate-
gorical representations of risk (e.g., low, medium, high), whereas 
the New York and Virginia tools display areal extent of saturated 
area risk without gradation in saturation potential. In all cases, 
the models employ thresholds to determine whether a particu-
lar category or spatial extent of risk is displayed. The criteria 
used to determine these thresholds are different in every case, 
from forecasts or summations of rainfall amount (Missouri and 
Washington), to watershed runoff depths (Wisconsin), to soil 
moisture and runoff-contributing area (Pennsylvania), to extent 

of saturated area (Virginia and New York). Developing these 
thresholds can be much more complex than what is belied by the 
risk forecasts. For instance, empirical knowledge of runoff gener-
ation was used to identify soil moisture and runoff-contributing 
area thresholds in Pennsylvania’s Fertilizer Forecaster, whereas 
the Wisconsin RRAF System developed thresholds from a statis-
tical optimization routine that maximizes true positive estimates 
of runoff depth over false alarms (Goering, 2014). Regardless of 
approach, it is incumbent on developers of forecasting systems 
to assure end users that risk thresholds are sufficiently stringent 
to protect against nutrient wash-off events without unnecessar-
ily restricting one’s ability to apply manures and fertilizers due to 
erroneous forecasts of runoff risk.

Communication and Adoption
The wide use of devices with direct links to the internet is 

a 21st century advancement, both technological and behav-
ioral, that has tremendous potential for delivering information. 
Surveys have shown that >70% of US farms have computer 
access and 43% use computers for farm business of some kind, 
as of 2015 (USDA, 2007, 2015). This, coupled with increasing 
internet access on farms, especially larger farms with wealthier 
owners (Frisvold and Murugesan, 2013), has increased the 
use of weather forecasts in daily decisions (Mase and Prokopy, 
2014). Equally important is the near-ubiquitous access to online 
weather forecasts by farm advisory services, including public and 
private sector consultants, which have been shown to be one of 
the most trusted sources of information by farmers (Haigh et al., 
2014). The rapid adoption of smartphones and similar technolo-
gies by agricultural industries provides even richer opportunities 
for linking hydrological and biogeochemical sciences with land 
management, although these opportunities currently appear to 
lie mostly with younger farmers (<45 yr old) who are more tech-
nologically savvy than their older peers (Semler, 2015).

Although both the capability of modern technology and farm 
internet access are increasing, the adoption of decision support 
technologies by farmers for their intended use is a separate ques-
tion and depends on a wide variety of social factors, regulatory 
requirements, and economic incentives that may differ across 
regions (Baumgart-Getz et al., 2012). For example, the adoption 
of new technology aimed at water quality protection in the east-
ern United States (i.e., various best management practices, soil 
testing) is mainly driven by education through extension efforts 
and government incentive programs (Baumgart-Getz et al., 
2012; Leisnham et al., 2013), whereas agriculture in the western 
United States has seen a great increase in technology adoption, 
including wireless internet use, areal imagery, and computer-
based automation, driven by water shortages (Hanak and Lund, 
2012; Wardlow et al., 2012; Suprem et al., 2013). In the case 
of decision support tools like those reviewed here, segmenta-
tion of potential groups of adopters by social drivers, historical 
actions, and current needs can inform the design and market-
ing of future tools to be tailor-made for particular adopters and 
uses. Indeed, each of the tools described here was developed in 
response to specific users’ needs, and it is the size of this end user 
pool that ultimately determines the degree to which tools are 
adopted and used. If tools are made for a more general audience, 
they should focus on simple, accessible design and flexibility to 
minimize potential implementation barriers and allow for future 
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adjustments on the basis of new information. Extension-based 
efforts will continue to be an important driver in technology 
adoption on farms, and researchers developing tools like those 
reviewed here should consider the information and opportuni-
ties for collaboration provided by these programs. In addition, 
nontraditional partnerships with entities such as industry or 
university startup incubators may play a major role in spurring 
future adoption (Reimer, 2015).

The short-term forecasting tools reviewed herein reside 
within a much larger landscape of agricultural decision support 
tools (McCown, 2002; McIntosh et al., 2011). While there is no 
shortage of agricultural decision support systems, most of these 
tools neither make it past the development phase nor gain the 
institutional support needed for public reliance on their output. 
Ultimately, institutional support is fundamental to ensuring that 
an end user has confidence in the availability of forecasts, which 
must be reliably updated over time periods in which operational 
decisions are made. Key to development, therefore, are participa-
tory approaches that engage a wide array of possible end users and 
consider factors such as trust and attitude (Lynch and Gregor, 
2004). A body of experience reveals that the likelihood of use of 
decision support tools by farmers hinges on the transparency of 
their recommendations, ability to reduce uncertainty and, ulti-
mately, their utility (Armstrong and Stedman, 2009). Mase and 
Prokopy (2014), in reviewing farmer use of weather and climate 
data, found that a key to gaining farmer trust is convincing them 
of the improved accuracy and skill in weather forecasts. If farm-
ers distrust a source of these weather data, then acceptance of 
outputs derived from weather forecasts (e.g., hydrologic models) 
will be correspondingly poor. Indeed, farmers also tend to distrust 
divergent forecasts, placing a premium on approaches that can sat-
isfactorily convey uncertainty. Again, running models in ensemble 
mode can help with perceptions of transparency, enabling farmers 
to assess forecast uncertainty in making decisions.

The Future
It is unclear whether the utility of short-term decision support 

tools will be realized, as a plethora of unused or discarded decisions 
support systems have been developed for agriculture over the past 
several decades (McCown, 2002). Nevertheless, computer owner-
ship, internet access, and the use of mobile devices (phones, tablets) 
by farmers have expanded greatly in the United States in recent 
years, increasing the prospect that farmers will integrate short-term 
forecasting information into their operational decisions. A valu-
able short-term forecasting tool for nutrient management should 
assist producers and planners in making daily decisions by quickly 
identifying high-risk environmental conditions, be they fields or 
portions of fields, at high risk of generating storm runoff or times 
when nutrient transport risk is high. This ensures that those areas 
and times can be protected from potentially polluting activities 
(e.g., manure or fertilizer applications) that adversely affect water 
resources. Ultimately, short-term forecasting tools must enhance 
and complement existing conservation and nutrient management 
programs, such as the site assessment and guidance provided by 
USDA-NRCS’s 590 Nutrient Management standard. Inherent to 
this outcome is the expectation that the tools offer unambiguous, 
actionable, and scientifically defensible information on when and 
where to apply nutrients.
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